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Mitochondria are involved in numerous and important pro-
cesses such as the homeostatic control of calcium, iron and heme 
biogenesis.1,2 They also control certain kind of programmed cell 
death or apoptosis by releasing cytochrome c and other factors 
into the cytosol that trigger the apoptotic intrinsic pathway.3 
However, mitochondria are best known as critical players in reg-
ulating different stages of cellular respiration such as terminal 
electron transport, the citric acid cycle and oxidative phosphory-
lation. Along this process, mitochondria use metabolic inter-
mediates generated during the tricarboxilic acid (TCA) cycle 
to generate ATP that will be subsequently employed in other 
biosynthetic reactions.4

An alternative pathway of energy production is the conversion 
of glucose to lactic acid in a process known as ‘aerobic glycolysis’, 
which in mammalian cells is usually inhibited by the presence of 
O

2
. This inhibition grants the cell a wide range of oxygen con-

centrations under it is possible to maintain the energy produc-
tion. As Otto Warburg noticed in 1926,5 this type of glycolysis 
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The main energetic resources of the cell are the mitochondria. 
As such, these organelles control a number of processes 
related to the life and death of the cell and also have a 
prominent function in the maintenance of tumor cells. In the 
last years, several authors have proposed an active role for 
mitochondria in tumorigenesis, more specifically concerning 
somatic mutations in mitochondrial DNA (mtDNA). Here, we 
wanted to evaluate this hypothesis based on the conclusions 
obtained in a model of gliomagenesis with elevated levels of 
ROS (reactive oxygen species), a toxic by-product of tumor 
metabolism. According to our findings, none of the mtDNA 
variants were found relevant to the tumoral process or suggest 
the involvement of mitochondria in tumorigenesis beyond 
the metabolic requirements of the tumoral cell. We conclude 
that there is not enough evidence to support the claim that 
mitochondrial instability holds any relevant role in the tumoral 
process.
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is a hallmark of cancer cells, which heavily rely on glycolysis 
rather than cellular respiration to produce most of their ATP 
even when O

2
 is plentiful.

The rapid and chaotic growth of most tumor types entails 
a hypoxic environment that facilitates the production of reac-
tive oxygen species (ROS), a toxic by-product of the molecu-
lar oxygen consumed during respiration.6 Although low levels 
of ROS are easily manageable by an inducible antioxidant pro-
gram, an imbalance that favor ROS production can lead to oxi-
dative stress, increased genomic instability and impairment of 
DNA repair mechanisms that can result in mutations or double 
strand breaks (DSBs), specially in the mtDNA.7 This adds up 
to its close proximity to the electron transport chain, the fact 
that unlike nuclear DNA mtDNA lacks the protective activity 
of histones and the special susceptibility of mtDNA to organic 
compounds with carcinogenic activity.8 All of this makes the 
mtDNA of tumor cells a suitable candidate to harbor somatic 
mutations that may be responsible for malignant transformation.

In this mini-review we want to extent on our results and con-
clusions regarding our recent publication in PLoS ONE,9 where 
we found that although ROS may have a prominent role in early 
tumorigenesis helping the tumor cell to gain new oncogenic 
hits, this is solely true in somatic mutations affecting the nuclear 
DNA, while mtDNA remained intact along the process.

Mitochondrial dysfunctions have long been reported and 
were also hypothesized to contribute to several stages related to 
tumorigenesis. Although the mechanisms by which this contri-
bution takes place are still unclear, several authors have described 
mtDNA mutations as driving force promoting tumoral growth,10 
malignancy11 or modulating its metastatic potential.12,13 By 
contrast, other authors question the validity of these findings 
arguing that may be explainable by errors in documentation or 
laboratory work.14,15

Several examples of the occurrence and involvement of 
mutated mtDNA in carcinogenesis are reported by Ishikawa 
and colleagues.12 The authors examined the contribution of 
mtDNA mutations in several cell lines with different metastatic 
potential by performing reciprocal exchange of mitochondria 
among them, thus creating transmitocondrial cybrids. These 
cybrids from cell lines, either of murine or human origin, dis-
played switched mitochondrial activities, ROS levels and also 
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SCID immunodeficient mice and the tumoral masses derived 
were analyzed. We found that tumors from H-RasV12 expressing 
astrocytes displayed similarities to low-grade human gliomas, 
while tumors obtained from astrocytes with both hits resembled 
high-grade gliomas. Interestingly, we found that H-RasV12 alone 
was sufficient to induce high levels of ROS and chromosomal 
instability, whereas the contribution of Rb deletion was not 
significant.

In order to analyze the involvement of mtDNA in tumoral 
progression we also compared the karyotypes of cells derived 
from cRbloxP/loxP/H-RasV12 and cRb-/-/RasV12 tumors, T653 
(cRbloxP/loxP/H-RasV12) and T731 (cRb-/-/RasV12) respectively, and 
also with that of cRbloxP/loxP/H-RasV12 and cRb-/-/RasV12 primary 
astrocytes. Curiously, we found that although in primary astro-
cytes the replication stress induced by the oncogene H-RasV12 
alone is able to produce genetic aberrations in 30% of the cells, 
the cell lines showed severe aberrations and duplications of the 
chromosomes, ranging from 60 to >80 in most cases, in virtu-
ally 100% of the population analyzed. This seems to not be the 
case with mtDNA; although mitochondria are more likely to 
be targeted by oxidizing agents no significant instabilities were 
found. In the same way, analysis of human glioma samples mir-
rored previous results given that none of the variants found were 
suspected to be involved in the cancerous process.

These data indicates that cells with the greater number of 
aberrations were positively selected probably due to additional 
hits gained that somewhat allowed for maintenance and progres-
sion of tumorigenesis. Recently, DeNicola et al. have suggested 
that Nrf2 (also known as nuclear factor erythroid 2-related 
factor) activity is linked to RAS-mediated ROS production 
through the RAF-MEK-ERK pathway. This factor, along with 

metastatic potential when injected in C57BL/6 mice. To verify 
whether these findings have a correlate with mtDNA integrity, 
the authors analyzed the mtDNA of highly metastatic cell lines 
and identified two mutations in these cells as the responsible for 
mitochondrial dysfunction. Accordingly, mutated mtDNA from 
highly metastatic cell lines, together with defects in complex I, 
upregulates transcription factors associated with the metastatic 
phenotype such as MCL-1, HIF-1α and VEGF. This meta-
static behavior seems to be highly dependent on the integrity of 
mtDNA, as these same authors propose in another recent com-
munication.13 In this study, mitochondria from MDA-MB 231 
cells were replaced with mitochondria carrying normal mtDNA. 
Although ROS levels did not decrease, the impaired mitochon-
drial respiratory function of this breast cancer cell line was 
successfully recovered and its metastatic potential suppressed. 
Finally, they suggest that although either nuclear and mitochon-
drial DNA share the control over the respiratory function of the 
cell, only defects in mtDNA confer the cell the ability to metas-
tasize in the absence of ROS production.

High levels of ROS are a common feature among several 
human cancer cell lines and tumors from different lineages. 
Several oncogenes such as H-RasV12, K-RasG12D and c-Myc are 
known to increase these intracellular levels of ROS.16 In our 
model of gliomagenesis,17 we combined two oncogenic hits, 
H-RasV12 and deletion of retinoblastoma (Rb1), to recapitulate 
two common features of gliomas, hyper-activation of signaling 
pathways and deregulation of cell cycle control, respectively.18 
We observed that although astrocytes with high levels of ROS 
produced by H-RasV12 underwent cellular transformation they 
only displayed features of malignization when combined with 
retinoblastoma loss. These cells were subsequently injected in 

Figure 1. In our experimental setting a ‘normal cell’, an astrocyte, is submitted to an oncogenic event, H-RASV12 that induces an oncogene-mediated 
transformation by means of the hyperactivation of the signaling pathways, and very especially the RAF-MeK-eRK pathway. This causes a replication 
stress that in other cell types leads to senescence but in astrocytes increases their proliferation rate, transforming the cell in the process. The reactive 
oxygen species present in such scenario allow for additional oncogenic insults that help the transforming cell complete the process, involving a posi-
tive selection of cells with the greater number of genetic aberrations in nuclear DNA. Surprisingly, none of the heteroplasmies found in the mitochon-
drial DNA of tumor cells were linked to the onset or maintenance of the tumoral process.
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electron transfer chain. Intriguingly, the mitochondrial activity 
in transduced astrocytes was considerably higher than that of 
tumor cells, who appeared on par to control groups. A similar 
outcome was observed with ROS levels, higher production in 
cRbloxP/loxP/H-RasV12 and cRb-/-/H-RasV12 primary astrocytes but 
lower in the cell lines, suggesting that the primary source of 
these ROS was of mitochondrial origin. Likewise, the quantity 
and distribution of the mitochondria within the cell seemed to 
corroborate these data.

Taken together, and as Figure 1 shows, these data suggested 
that the hyper-activation of signaling pathways mediated by 
oncogenic stimuli as RAS leads to a DNA replicative stress that 
in some cell types is thwarted by the cell entering senescence,21 
but not in the case of astrocytes.17 In this initial stage, RAS-
expressing cells are highly mutagenic either because of this 
oncogene-induced replicative stress or impairments in the DNA 
repair response. This stress also affects the mitochondria, which 
are over-stimulated to reach the metabolic needs of the trans-
forming cell, favoring the production of highly reactive oxygen 
species that in turn mutate nuclear DNA promoting carcinogen-
esis. However, and despite other authors suggesting opposite sce-
narios,22 mtDNA remains without any noticeable or significant 
mutation that could contribute to this process. Curiously, these 
transformed cells seem to undergo a selection process where the 
cells with the most genetic aberrations pass, probably due to the 
activation of detoxification programs that help the cell reduce 
toxic ROS levels.19

Methodological errors occur in all facets of genetic research, 
including mtDNA studies. Salas et al.15 indicated that “the vast 
majority (80%) of the studies dealing with potential functional 
implications of the mtDNA molecule in tumorigenesis (and pro-
viding data for inspection) are based on faulty data with surreal 
findings.” These conclusions were based on solid theoretical 
foundations.23 Briefly, the mtDNA is inherited as a single block 
from the mother to the offspring such that inter-generational 
mtDNA differences only arise by way of mutation. This feature, 
couple with the fact that there is a huge amount of genomic data 
available in the literature (>150,000 control region sequences 
and >9,500 entire genomes analyzed in hundreds of human 
population groups) has allowed the reconstruction of the most 
solid phylogeny in the whole field of genetics. Thus, an experi-
enced researcher can easily detect artificial patterns of mtDNA 
variation (generated by errors) when contrasting these patterns 
against those expected according to the known mtDNA tree. 
For instance, the instabilities detected by oncogeneticists can 
often be most plausibly explained by way of unintended mix-
tures of two or more lineages representing different branches of 
the mtDNA phylogeny, one could be the genuine one while the 
other from a contaminant (Fig. 2). In such cases, it is almost 
impossible to conceive such mixture scenario by the action of 
the tumor cell machinery.24 Therefore, in tumor studies, seem-
ing instabilities can easily occur by e.g., contamination, sample 
mix-up, phantom mutations or documentation errors, given the 
fact that quite often low amount DNA are manipulated in these 
studies and micro-dissection experiments are performed without 
proper quality standards.

its repressor KEAP1, regulates the expression of numerous detox-
ifying and antioxidant genes, serving as a protection against car-
cinogenesis, liver toxicity or respiratory distress.20 The authors 
also found decreased ROS levels in pancreatic and lung cancer 
samples from patients and mice, coincidentally with high levels 
of NRF2 and its target genes. However, elimination of NRF2 
in these types of tumors increased the number of senescent cells 
and reduced the proliferative rate of K-RasG12D, suggesting that 
tumoral cells may take advantage of this ROS-detoxifying path-
way to enhance survival.

Cytochrome c oxidase activity is a good indicator of the respi-
ratory activity of the mitochondrion since this is a transmem-
brane protein that serves as terminal electron acceptor in the 

Figure 2. Scheme showing a case were a tumor sample shows several 
‘seeming-instabilities’ when compared with the blood (non-tumor) 
sample from the same patient; instead of attributing these (seeming) 
instabilities to the tumor process, one could considers an alternative 
more likely explanation. Thus, one could assume the occurrence of an 
unfortunate contamination of the tumor sample, and therefore the 
observed tumor profile could be better explained as a mixture of two 
haplotypes (h1 + h3): one haplotype corresponds to the genuine one 
from the patient (h1) and the other (h3) comes from an external donor 
(contaminant); the phylogenetic approach allows to easily deconvolute 
the mixture. Along branches of the fictitious phylogeny are the muta-
tions (yellow starts), beside are the numbers indicating the mutational 
positions and the letters (A, C, G, T) indicating the nucleotide variant; 
e.g., mut.1G > G/A means that at position 1, the reference sequence 
has a G, while the targeted haplotype carries two variants simultane-
ously, G and an A. More about notation: (a) haplotypes are annotated 
from the root (the reference sample) to the tip of the branches); (b) “h” 
denotes haplotypes (#1, #2 and #3); and (c) haplogroup is a clade of 
sequences phylogenetically related, in this particular example, haplo-
types 1 and 2 belong to the same haplogroup because they share the 
diagnostic mutations (basal motif) at positions 3 and 4.
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In summary, we have demonstrated that in our model of glio-
magenesis numerous and important alterations of nuclear DNA. 
Mitochondrial activity and ROS production is highly increased in 
these early steps of tumorigenesis but mtDNA conserved its integ-
rity along the process. Thus, the possibility of intervening in mito-
chondrial energy metabolism function in cancer is therapeutically 
promising, although up to now, the number of molecules avail-
able with potential to safely achieve this is limited.40 These data 
were corroborated with human samples of patients with glioma, 
thus ruling out a mitochondrial genetic instability contribution to 
tumorigenesis in this type of cancers. There are no guaranties for 
the findings presented by previous studies indicating a number of 
mtDNA instabilities as responsible for tumorigenesis, under the 
suspicion that these results could be false positives of instabili-
ties artificially and unintentionally generated by different kind of 
methodological errors.
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The so-popularized phylogenetic approach has resulted to be 
extremely useful in other fields of research, such as population 
genetics; and although guidelines have been published in order 
to minimize errors in genetic studies,25,26 the medical literature 
still shows a high penetrance of errors of different nature.27-30 The 
interest of forensic analysts in the mtDNA test, especially for the 
analysis of hair shafts and skeletal remains, has obligated them 
to pay deep attention to the different source of errors in mtDNA 
analysis;31-34 and this has stimulated them to substantially improve 
quality standards.

Unfortunately, errors still exist in the literature dealing with 
mtDNA instability.35,36 This is favored by the fact that studies pre-
senting a good number of instabilities find their way into onco-
genetic journals much easier than those that just show negative 
results (a problem that has been baptized in biomedical sciences as 
‘publication bias’). Accepting studies that do not follow minimal 
quality—e.g., ‘forensic’—standards (as for instance performed in 
Cerezo et al.) will unfortunately contribute to perpetuate a ficti-
tious scenario that drives science in wrong directions. A similar sce-
nario is that involving case-control mtDNA association studies.37,38

It is most likely that the power of next generation sequencing 
(NGS) techniques will help to unravel the role (if any) that mtDNA 
variation could have in tumorigenesis. However, before NGS 
replace standard Sanger sequencing procedures, it needs proper 
validation, preferably following the high standards demanded by 
forensic geneticists.39
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